
MATH2050C Selected Solutions to Assignment 5

Section 3.2 no. 14, 17, 18, 19, 21.

Section 3.3 no. 1, 3, 5, 7, 10, 11, 12, 13.

Section 3.2

(14b) Use Squeeze Theorem in 1 ≤ (n!)1/n
2 ≤ (nn)1/n

2
= n1/n and limn→∞ n1/n = 1.

(19d) Use
n!
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By Squeeze Theorem we get

lim
n→∞

n!

nn
= 0 .

(21) (a) The sequence {1/n} converges to 0 and {(1/n)1/n} converges to 1.

(b) You can take {n}.

Note. In case limn→∞ x
1/n
n = r ∈ (0, 1), then limn→∞ xn = 0. In case r > 1, then {xn} diverges

to ∞. But there is no conclusion when r = 1. Both cases could happen.

Section 3.3

(5) y1 =
√
p, p > 0, and yn+1 =

√
p+ yn . Use induction it is straightforward to see {yn} is

increasing. To show boundedness we follow the hint and use induction to show yn ≤ 1 + 2
√
p.

Assuming yn ≤ 1 + 2
√
p, we have

y2n+1 = p+ yn ≤ p+ 1 + 2
√
p = (1 +

√
p)2,

hence
yn+1 ≤ 1 +

√
p < 1 + 2

√
p .

(7) It is clear that xn+1 = xn + 1/xn, x1 > 0, is increasing. Were it bounded from above, its
limit exists by Monotone Convergence Theorem. Letting the limit be b > 0, then passing limit
in the defining relation of the sequence we get b = b + 1/b, which is ridiculous. We conclude
that {xn} is divergent to infinity.

(10). We claim the sequence {yn} given by

yn =
1
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+

1
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+ · · ·+ 1

2n
,

is increasing and bounded. First, we have

yn <
1

n
+

1

n
+ · · · n

n
=
n

n
= 1 , ∀n ≥ 1

, hence {yn} is bounded from above. Next,

yn+1 =
1

n+ 2
+

1

n+ 3
+ · · ·+ 1
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+

1
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.
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We have

yn+1 − yn =
1

2n+ 1
+

1

2n+ 2
− 1

n+ 1
> 0 , ∀n ≥ 1 ,

hence it is increasing. By Monotone Convergence Theorem {yn} is convergent.

Note. One can show that the limit is log 2.

(11) We claim that the sequence xn =
∑n

k=1

1

k2
is convergent. It is bounded from above:

xn =
1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
< 1 +
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)
+
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2
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3

)
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n

)
= 2− 1

n
< 2 .

Since it is clearly increasing, by Monotone Convergence Theorem {xn} is convergent.

Note. As discovered by Euler, the limit is π2/6.

(12)(a) By Limit Theorem

lim
n→∞

=
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1

n

)n+1

= lim
n→∞

(
1 +

1

n

)
lim
n→∞

(
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= e .

(b) By Limit Theorem

lim
n→∞

=
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n

)2n

= lim
n→∞

(
1 +

1

n

)n

lim
n→∞

(
1 +
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n

)n

= e2 .

(c) By Limit Theorem

lim
n→∞

=

(
1 +

1

n+ 1

)n

=

limn→∞

(
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1
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)n+1
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(d) We have

1− 1

n
=
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1

n

.

If we can show that

lim
n→∞

(
1− 1

n2

)n

= 1, (∗)

then by Limit Theorem and the above expression,

lim
n→∞

(
1− 1

n

)n

=
limn→∞(1− 1/n2)n)

limn→∞(1 + 1/n)n
=

1

e
.
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To prove (*), (
1− 1

n2

)n

= 1 +
n∑

k=1

(nk)

(
−1

n

)2k

.

We estimate the general term by∣∣∣∣∣(nk)

(
−1

n

)2k
∣∣∣∣∣ =

n(n− 1)(n− 2) · · · (n− k + 1)

k!

1
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)
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n
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1
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, ∀k .

Therefore, ∣∣∣∣(1− 1
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− 1
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n2
+
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1
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n
→ 0, as n→∞ .


